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ABSTRACT
In this paper we carry out an asymptotic analysis of the system of

differential equations describing the transient behavior of a p-n-junction
device (i.e. a diode). We determine the different time-scales present in the
equations and investigate which of them actually occur in physical

situations. We derive asymptotic expansions of the solution and perform some

numerical experiments.
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SIGNIFICANCE AND EXPLANATION \j
The present paper is concerned with a mixed elliptic~parabolic sinqularly k;ﬁ
Cod
A perturbed initial boundary value problem describing a p~n~junction device. -
The purpose of transient modelling is the determination of the response time :ii
) of a particular device (as opposed to the stationary model where the emphasis :ii
lies on the computation of voltage current characteristics). We carry out an iii
asymptotic analysis using a singular perturbation parameter which is 253
proportional to the minimal Debeye length. EE%
Essentially we deal with the involved equations on 2 different time i~
scales: One is proportional to the size of the device. The other one is the ;23
so called "dielectric relaxation time"” which is several orders of magnitude 53;3
smaller and essentially a property of the material and the doping :?
concentration. Thus only effects occurring on the "slow" timescale (which is E;;
. on the order of 10~° sec) can be accelerated by miniaturization of the device ES%S
whereas the dielectric relaxation time represents a lower bound to this =

| (technological) approach. This fact has been known by engineers for several

years. However, this analysis gives a mathematical proof for it. Moreover,

it is precisely determined which effects are due to which time :cales. We

derive asymptotic expansions for the solution in powers of the perturbation
parameter and give an existence proof for the solution of the reduced
problem. We determine (and prove) the decay rate of the fast time scale

solution.
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AN ASYMPTOTIC ANALYSIS OF A TRANSIENT p-n JUNCTION MODEL

Christian Ringhofer

0. Introduction

In this paper we present an asymptotic analysis of a singularly perturbed mixed
system of parabolic and elliptic equations modelling a p-n-junction device. We consider
the following physical situation: A semiconductor (for instance silicone) is doped with
donor atoms (positive ions) in the left-hand-side and with acceptor atoms (negative ions)
in the right-hand-side of the device. The device possesses 2 ohmic contacts to which a
bias is applied. The devive is assumed to have a characteristic length 28(~ 0.5‘10-3cm).
The physics of a p=-n junction are explained in Sze [1969), Ashcroft et al. [1976] and R.
A. Smith [1978]. The equations governing the potential distribution and the carrier and

current densities are in the case of one space dimension (see Van Roosbroeck [1950]):

(0.0) wxx = % (n -p~-2C) Poisson's equation
1
(0.1) n, = E.Jnx ~ R continuity equations
(0.2) Py = < 15 - R for electrons and holes
q “py
(0.3) I, = aldyny, - unnwx) current relations
(0.4) Jp = -q(Dppx + upp¢x) for electrons and holes .

The system (0.0)-(0.4) is subject to the boundary conditions

(0.5) (a) v(=2,t) = -y (t), (b)) ¥(L,t) = ¥, (¢t)
(0.6) n(-2,t) = p_q + C(-2), pl(-f,t) = p_,
(0.7) n(f,t) = Py * c(2), pl(L,t) = p,

and the initial conditions
(0.8) V(x,0) = $y(x)
n(x,0) = nI(x)

p(x,0) = py(x) .

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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The meaning of the dependent variables with units is given in Table 1:

Table 1
v electric potential (V) .
L electric field (V cm ')
n electron density (em™3)
p hole density (em™3)
In electron current density (A cm-z) }
I hole current density (A om™2)

The parameters gq, €, L) up, D, Dp' n;, Up in (0.0)=(0.4) have the following meaning

and approximate value at T = 300K (room temperature).

Table 2
q elementary charge 1012 as
~12 -1_=3
€ permittivity constant 10 AsV ‘cm
u,  electron mobility 103 m?v-lg™!
Mo hole mobility 103 cm2v=1g™1 1
10 -3
ny intrinsic density 10 cm
D, electron diffusion constant 25 cm?s”!
:~. Dp hole diffusion constant 25 cmzs-1

- -'d s &

e

C(x) in (0.0) 4is a given function of space and mocdels the doping profile (i.e. the

gk
..

preconcentration of electrons and holes). We assume that C(x) < 0 for x < 0 (in the
p-region) and C(x) > 0 for x > 0 (in the n-region holds). Thus we locate the p-n
junction at x = @. Moreover we agsume that C(x) has a jump-discontinuity at x =0
(abrupt junction) and that C{x) is an odd function of x 1i.e.

v~ (0.9) C(-x) = =C(x) for x # 0, C(0) £ 0
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holds. (Although the oddness of C does not appear as a special case from a physical
point of view it will simp'ify the analysis considerably). Because of the physical
background of the boundary conditions (0.5)-(0.7) the oddness of C(x) results in
P-q = pq *+ C{1). For the recombination rate R in (0.1), (0.2) we take the so called

Shockley Read Hall recombination term:

. nep = ny

(0.10) R =
rn(n + “1) + Tp(p + “1)

Tn and T denote the average lifetime of electrons and holes. Realistic numerical

values for T and rp are T = Tp = 10'6(5). Other recombination rates can be found
in Langer et al. [1981] and Schiitz et al. [1981). Generally it can be said that the
choice of the recombination rate is not very important for the behavior of the solution of
the time dependent problem (0.0)-(0.8) as long as we do not consider impact ionization
effects (whereas it is of considerable importance in the steady state case (see Mock
[1983])).

For the rest of this paper we assume that the initial functions *I' ny and py in

(0.8) are compatible with the boundary conditions (0.5)-(0.7) and the (elliptic) equation

(0.0). Thus we request that

(0.11) vy = ng-py -0
XX
— (0.12) p(tt) = p,,
¥ (0.13) n(#2) = p . +-C(4%)
-‘_ t‘
- (0.14) Vp(R) = 9 (0), (L) = b ()

o

holds. After an appropriate scaling we carry out a singular perturbation analysis of

| ]

- problem (0.0)-(0.8) where the quantity

o cu, V2
- (0.15) A= (=

e £°q max|c(x)|

, x

E:' (which is proportional to the minimal Debeye length) acts as a perturbation parameter. In
)
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this analysis we will rely on a similar asymptotic analysis for the steady state problem
by Markowich and Ringhofer (1981] and Markowich et al. ([1982].

It turns out that in addition to the internal layer behavior already present in the
steady state case (see Markowich and Ringhofer [1981) there exist two different time
One time scale (the

scales in the problem (0.0)-(0.8). "slow" scale) is proportional to

=y

22/u and is of the order of magnitude 10'9 sec for modern devices. P

Here u = un
denotes the mobility. The other ("fast"™) time scale is proportional to the so called
dielectric relaxation time (see Sze [1969]) which is several orders of magnitude

smaller. Thus the asymptotic solution of (0.0)-(0.8) will consist of 4 different parts.
Two parts vary on the slow time scale - one of them valid near the p-n junction (x = 0)

one of them valid away from x = 0. The two other parts - again an outer solution and a
p-n-junction layer solution = vary on the fast time scale and are only valid near t = 0.
From the work of Markowich and Ringhofer ([1982] we conclude that the fast time scale is

not present if ¢I’ ny and p; are solutions of the steady state problem

.3 - -
(0.16) wxx € (n p C)
(0.17) (a) Jnx = gR, (b) Jn = q(Dnnx - unnwx)
(0.18) (a) Jpx = =gR, (b) Jp = -q(Dpr + upp¢x) .

Together with the boundary conditions corresponding to (0.5)-(0.7) in the steady state
case.

This paper is organized as it follows: In Section 1 we scale (0.0)-(0.8) and
reformulate the problem as a singular perturbation problem. 1In Section 2 we derive the
asymptotic expansion for the slow time gcale. We prove the existence of a solution of the
reduced problem and give necessary and sufficient conditions for the slow time scale
expansion to satisfy the differential equations the boundary and the initial conditions.
These conditions are satisfied if the initial data WI' n; and p; are solutions of the
steady state problem (0.16)-(0.18). In Section 3 we consider the case when these
conditions are violated and derive an asymptotic expansion for the solution of (0.0)-(0.8)

with general initial data (0.8) which just satisfy the compatibility conditions (0.11)-

-d-
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(0.14). In Section 4 we present some asymptotic solutions which were obtained by solving
the reduced problem and the layer eguations numerically by finite difference methods. The

proofs of some results stated in Sections 2 and 3 are given in the appendix.
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--:':- 1. Reformulation as Singular Perturbation Problem
'\t First we scale (0.0)-(0.8) appropriately and reformulate it as a singular
e
'-:.: perturbation problem: We scale the space variable x by the characteristic length 2
.
\:.: and the time by ’;2/D where D =D = oy denotes the diffusion coefficient
I
N - x _D_
Y-, (1.0) Xg =T ¢ tg =t 5 -
) '
~ -
ASE For V¥,, n, p, J,, Jp we use the following scaling:
-'.:: (1. 1) y = U'I‘ws' n = Ens, p = aps ,
.-."l
N - -
; acb gco
e (1.2) J_ = J J_ = J
R
s (1.3) € := maxlc(x)| .
> - x
WY (Here the variables with the subscript s denote the scaled variables.)
g
(1.4) Remark: For the rest of this paper we assume the Einstein relations
e p
N
AR
:. Dn D
S (1.5) Up = — = £,
- U u
i n P
) Q <
' o Up (the thermal voltage) is only a function of the temperature (which is assumed to be
rT
B constant). 4
2.0
RS
'::.’ After scaling the system (0.0)-(0.8) assumes the form
N
.‘1
1 y 2 32 C{x)
AN . AT — = - - = —
1 (1.6) 2 ¥g = Ng ~ Pg = Cgr Cglxg) max|C(x) |
- X
'._' s
J'"n
~ 3 3 3 3
A 9 = 9 - = 2 - L
R (1.7) (a) 3 "s " 3% Jns Rge {(b) Jns ax_ Ms ~ Ds 3x Ws
N e s s 8 s

Y * N
DS
- e P ®

y
Tatat N At

D)
- » - -

N Rt AT T A A
SN A AT
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boundary conditions:

(1.10) ‘bs(‘1lts) = -‘01 (t), ws(1'ts) = W1 (t)
8 8
(1.11) ns(-1,ts) - p_1a + Cc(-1), ns(1,ts) = 915 + C(1)
{1.12) ps('1,ts) = pP.q ¢ Ps("ts) = Py
8 8

initial conditions

(1.13) ws(xs,o) = wIs(xs), ng(xg,0) = nIs(xs), Pg{xg,0) = pI‘(X') .

Here wt1s, *:" pi‘a' "t Pr, denote Y, ., ¥y, Pyqs Ny, Py scaled in the same way as
¥, n and p. The (dimensionless) singular perturbation parameter XA in (1.6) is of the

form

(1.14) A = (— ¢ &= maxicoal .

A is proportional to the minimal Debeye length (see Sze [1969]). From hereon we will
omit the subscript s. Since C(x) is an odd function we can employ the "Ansatz"
(1.15) Y(=x) = =¥(x), n{x) = p(-x), T (x) = Ipl=x)
to obtain a problem posed on [0,1]. This enables us to treat the internal layer at the
p-n junction (see Markowich and Ringhofer ([1981]) as a boundary layer. In order to
employ this "Ansatz" we have to assume the corresponding relations for the intial data

WI, ny and pyg.

{(1.16) Assumption: The initial data satisfy

§ (1.17) ¥ (=x) = b (x), aplx) = pr=x) .
- After employing (1.15) we obtain (1,6)=(1.13) in its final form:
' 2
(1.18) Ay =n-p-c
(1.19) () n, =3, -R (b) 3, = n, - nb,
N
: (1.20) (a) p, = “Jp, " R (b) Iy = =Py = PV,
; -y-

R N Rt R OGP
Catadn (ataaedn tatadass s
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(1.21) R= o3

boundary conditions:

(1.22) v(1,t) = ¢1(t), n(1,t) = p, + C(1), p(1,t) = p,
(1.23) V(0,t) = 0, n(0,t) = p(0,t), J,(0,t) = Jp(O,t)
initial conditions:

(1.24) Y(x,0) = WI(x), n(x,0) = np(x), p(x,0) = py(x) .

(1.25) Notation: For the rest of this paper we denote the solution vector

T
(‘J’:n'PlJner) by
T
(1.26) w = (W,n,p,Jn,Jp) .
The boundary conditions (1.23) emerge from the "Ansatz"™ (1.15). The compatibility

conditions now read

2

(1.27) X VbI nnI -pI _c

XX
(1.28) Y (1) =% (), np(1) = b, pr(1) = a
(1.29) ¥700) = 0, ny(0) = py(0), ny (0) = -py (0) .

Again (1.29) is obtained from (1.17) and gquarantees (1.23) to hold at t = g. 1In practice
WI, ny and Py will be the (scaled) solution of the steady state problem (0.16)-(0.18).

From Markowich and Ringhofer {1981] we know that this solution has an asymptotic expansion
in powers of ) consisting of an outer solution and layer terms varying in the variable

£ = x/A. From here on we will assume that wI' n; and py; have an asymptotic expansion

of the same form:

(1.30) vi(x) = (x,0) ~ jzo CHERREICIME

T
WI = (WIIHIJPI)
-3

where the wI satisfy

-Cc_E

(1.31) Iwi(E)l < C1e 2 for some constants C4,C, .
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we will assume that the initial data are such that the current densities JIn

stay uniformly bounded at t = 0 as ) tends to zero:
max ]Jn (x, M}, max |J_ (x,\)| < const. as A + 0
¥.70,1] 1 xe(0,1] I

J :-nI-nW, JpI--pI - p_V .
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2. Slow Time Scale Expansions

In this section we derive our asymptotic expansion to the solution w of (1.18)-
(1.24) of the form

(2.1) Wit ~ § @+ wIdend
=0
Thus we obtain an approximation of the solution on the "slow" t-time scale. The expansion
(2.1) will satisfy the differential equations (1.18)=(1.20) and the boundary conditions
(1.22)~(1.23). However, it will not satisfy the initial conditions (1.24) for arbitrary
initial data WI, ny and pr- We derive a necessary and sufficient condition on
(WI,nI.pI) such that the expansion (2.1) satisfies (1.24) as well. As it turns out

these conditions are satisfied if WI' ny and p; in (1.24) are the solution of the

steady state problem

2
(2.2) A =n-p-¢
XX
(2.3) ~-R = Jnx, Jn =n, - nwx
.4 = J = - -
(2.4) R px, Jp Py pwx

together with the boundary conditions (1.22)-(1.23). Since this will be the case in all
“physically meaningful” situations (2.1) actually represents an approximation to the
solution of (1.18)=(1.24). Furthermore we give an existence result for the zero'th order
~0
term w in (2.1).
We start with the equations determining ;o: Setting ) equal to zero in (1.18)-

(1.24) gives

(2.5) 0=n0-30-¢c
~0 ~0 ~0 ~0 ~0 ~0~0
(2.6) (a) n_ =3 + R, (b 3 =n_=-nv
t n n x X
~0 ~0 ~0 ~0 ~0 ~0~0
(2.7} (a) P, = -Jpx + R, (b) Jp =-p, - P wx
~0 ~0 2
~0 -p =6
(2.8) R 3= :0 ~0 :
n +p + 2§
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Thus Poisson's equation (1.18) degenerates to the condition of vanishing space charge for

X+ p.

Subtracting (2.7) from (2.6) and using (2.5) we can rewrite (2.6)~(2.7) into

~0 ~0
(2.9) (t2p +CH ] = Cpy
~0 _ ~0 _ ~0 ~0 _ ~0 ~0~0
(2.10) (a) P, -Jpx + R, (b) Jp =P, P wx
~0 ~0
(2.11) R = L&)L*—c—)- .
2 +cC

(2.9) is an elliptic equation expressing the conservation of the total current J, + Jp

(in the absence of space charge) coupled to the parabolic conservation law (2.10)(a),(b).

~0 ~0
n and Jn are then given a posteriori by virtue of (2.5):
~0 ~0
(2.12) n =p +C
~0 ~0 ~0 ~0
2. = + C. - .
(2.13) I =P, x~ (P + 0

Since (2.9)~(2.10) is a system involving two second order differential operators in space
we can not expect its solution to satisfy all six boundary conditions (1.22)-(1.23). At
the contact (x = 1), however, the boundary conditions have been derived from the
assumption of vanishing space charge (n - p - C = 0). Therefore the boundary conditions
(1.22)-(1.23) are consistent with (2.5): If we impose the boundary conditions

(2.14) Ve = ute, PO =g

;0 i= ;0 + C satiasfies automatically the third houndary condition

(2.15) 01,8 = py + C(1) .

Therefore no boundary layer term is needed at x = 1 (the contact). At x = 0 (the
junction) the condition n(0,t) = p(0,t) contradicts ;0 - ;0 - C = 0. Therefore the
outer solution ;0 has to be supplemented by a boundary layer term there. (In other
words the approximation of vaniszhing space charge can not be valid near the p-n
junction.) Thus we supplement ;o(x,t) by the layer term

(2.16) N T AR A P At A

0
where we request that 1w § decays exponentially as { + «. Inserting

-ll=




LR BN AR
PSS,

{23

¢
£ 0 8

oy
>
[ 4

;O(XE,t) + wO(E,t) into (1.18)=(1.20) and X + 0 gives (using (2.9)~(2.13)):

(2.17)

(2.18)

(2.19)

Because

(2.20)
(2.21)

(2.22)

~0
Inserting w + w

(2.24)
(2.25)

(2.26)

From (2.24)-(2.26) we obtain two boundary conditions for the system (2.9)-~(2.10) at

x = g,

(2.27) Theorem:

problem:

(2.28)

(2.29)

(2.30)
(2.31)
(2.32)
(2.33)

(2.34)

has to vanish at § ==

The zero'th order term ;0

0 ) ‘0
Vgg = m - P,
0=23", ) 0 =n° - (%0,6) + a0’
n £ 13
£
0=-3, (b) 0 = -p0 - (3%0,&) + p0re’ .
Pg € £

0

o
w
(=]
~
Q
"

-~

n®(€,t) = n0(0,t) lexp(v’(E,£)) - 1]

~ ~0 ~
po(E,t) =p (O,t)[exp(-wo(ﬁpt)) -1 .

into the boundary conditions (1.23) and X + g gives

v2e0.t) = ~3%(0,¢)
200, t)exp(%(0,£)) = 5%(0,t)exp(-°(0,t))

~0 ~0
Jn(O,t) = Jp(O,t) .

Thus we have the following

~0 ~0
((2p” +C)y ] =¢C

XX
~0 ~0 ~0 ~0 ~0 ~0~0
(a) p, = -Jp + R, (b) JP =-p, -~ P vx

x

~0 ~0 ~0 ~0
(p (0,t) + C(0))exp[=-¥ (0,t)] = p (O,t)exp(y (O,t)]
~0 ~0
Jn(o,t) = Jp(o,t)
~0 ~0
v (1,t) = ¢'1(t), p (1,t) = P4
~0 ~0 ~0  ~0 ~0 ~0
n=p +C J =p +C - (p + CNJx

p2(x,0) = £(x) .
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of the outer solution satisfies the reduced
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N (2.35) Remark: We have not determined the initial function £(x) yet. The appropriate
& ¢ cholce of £(x} will be discussed at the end of this section and in Section 3. 1In any
case we can prove an existence result for small f up to a certain value of the bias w1.

(2.36) Theorem: There exist positive constants o, and K such that if

(2.37) o = max|f(x)| < a, and y > n%

0
holds then (2.28)-(2.34) has a classiczl solution which is continuously differentiable

with respect to x and t for x € {0,1] and all t less than some arbitrary but !

finite time T. The proof of Theorem (2.36) is deferred to the Appendix.

Once ;0 is obtained as the solution of problem (2.28)=(2.34) wo can be obtained

by solving (2.17)=(2.19) together with the appropriate boundary conditions:

{2.38) Theorem: The layer term wo - (wo,no.po,ao,Jo) in (2.1) satisfies

Ao - -J’o
(2.39) '”EE =n (o t)[ev - 1] ~ p(0,t) (e -1
(2.40) Vo8 = 4%0,6), Vet = 0
“0 ~0 Ve ~0 ~0 -, e)
(2.41) n (E,£) = n (0,t)[e 77 = 1), p(E,t) = p (0,t)[e M B
“q ~0
(2.42) I (E,e) = JP(E.t) =0 .

We now turn to the question of an appropriate choice for the initial function £(x)
in (2.34). As mentioned earlier we can not satisfy the initial conditions (1.24) with our

expansion for arbitrary initial functions V¥ which just satiafy the compatibility

I'nI IPI

, condition (1.27)-(1.29). From the previous asymptotic analysis we conclude

~
'\ (2.43) lemma: If the solution w(x,t,A) of (1.18)-(1.24) possesses an asymptotic

- ~
E\ expansion of the form (2.17) then the zero'th order term wg(x) in (1.30) has to satisfy

3

q ~0 =0 . _

2 (2.44) ((2p, + C)b, ] Cyx

. X x

s
- 0 *0
-: If (2.44), is satisfied then the zero order term w (x,t) + w (£,t) 4in (2.27), (2.38)
s
': satisfies the differential equations the boundary and the initial conditions up to terms

- of order O(A) if the initial function f(x) in (2.34) is chosen as ;g(x).
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Proof: Since (2.28) is time independent it obviously has to hold for t = 0 if

w(x,t,X) has an asymptotic expansion of the form (2.1). Therefore (2.44) is a necessary

condition. On the other hand ;O(x,t) + wo(E,t) satisfy the differential equations and

the boundary conditions up to terme of order O(X). The compatibility condition (2.46)

implies
~0 ~0
(2.47) 0=n -p;, =C
(2.48) W: = ng - pg
113
20 ~0
(2.49) WI(O) - 'WI(O) .

If we choose f(x) in (2.34) to be ;2(x) then (2.33) and (2.27) imply

~0 ~ ~
n (x,0) = ng(x). In this case Wo(x,o) satisfies

(2.50) [(2B]0x) + COxFAX,O0)] = Cp(x)
~0 -3%0,00 _~o0, . 3%o0,0) ~o0
(2.51) p (0) + c(0)]e T o py(0)e L, 9 (1,0) = v,(0) .
From (1.32) we conclude
0 - - . A
(2.52) J =n_ = (n_(0) +n )y =0
nI IE 1 b IE

Iy

since n, decays exponentially for £+ o

-

v

(2.53) n (E) = n (0)[e .y
and similarly

. 5 -y
(2.54) pI(E) = pI(O)[e -1

- N
~

has to hold. 1Inserting VY_ + ¥_, ny + no ;I + Py into (1.29) and X + # gives together

with (2.47)

-14-
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I

0 WI(O)

~0
(p;(0) + C(O)]e = p;e .

~

Thus ¢ and

1 satisfy the same differential equation (2.50) and the same boundary

(x,0)

conditions. Since this problem has a unique aolution (which follows from a simple maximum
principle) $2(x) z 3%(x,0) has to hold. Inserting (2.53) and (2.54) into (2.48) givea
the same boundary value problem for WI as w°(5,0) has to satisfy namely
~0 -
~ ~ w ~ -w
(2.56) W o=3%0)te T- 11 -p%0)te T- 1
I I I
114
(2.57) v2(0) = F_(0), ¢ (=) =0
' 1 I Tr *

Since (2.56)-(2.57) again has a unique solution &:(E) - GO(E,O) and therefore
;:(E) - ;O(E,O) and ;:(E) = ;O(E,O) has to hold.
(2.58) Remark: So if the initial functions WI, ny and Pr satisfy (2.44) in addition
to (2.58) we have constructed a zero order asymptotic solution to problem (1.18)-(1.24).
Higher order expansions can now be obtained in a straightforward manner. If the
corresponding assumptions are made on the higher order terms of *1' ny and p; these
higher order expansions satisfy (1.18)=(1.24) to any arbitrary order in A.
We now conclude this section with the following
(2.59) Theorem: If the initial functions wI, ny and py are the solution of the steady

state problem

(2.60) A, =np-pp-C

XX
(2.61) (a) J"Ix = R, (&) 3, =ng - nIWIx
(2.62) (a) JpIx =R (b)) Iy =-pp - prIx
(2.63) b (0) =0, b (1) = v, (0)

ng(0) = pr(0) ,

-15-
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(2.64) anI(O) =3 (0, pr(1) = p,

-

then the conditions (2.44) is satisfied.

id
.

(4

For the proof of this statement the reader is referred to Markowich and Ringhofer

P AN AR

(1982) where a singular perturbation analysis of the problem (1.18)-(1.24) can be found.
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3. Fagt Time Scale Expansions

In this section we investigate the asymptotic behavior of the solution of (1,18)-
(1.24) if the conditions (2.44)-(2.45) on the initial functions are violated. It turns
out that in this case there is an additional "fast™ time scale pregent in the solution.
Although this time scale will not be present in the physically meaningful situations, as
we saw in the preceding section (since in these cases the initial functions are solutions
of the steady state problem (2.17)-(2.19)), it is of some interest to investigate these
"fast" solutions.

Any perturbation of the solution will propagate on this time scale. Therefore the
underatanding of this fast time scale behavior is important for the development of any
numerical method for the solution of (1.18)=(1.24) (see Ringhofer [1983]). Thus we derive
our asymptotic solution of (1.18)-(1.24) for arbitrary initial functions WI' n; and pg
which just satisfy (1.27)-(1.29) (and not necessarily (2.44)-(2.45)).

First we determine the possible fast time scale. For this purpose it is convenient
to reformulate problem (1.18)-(1.24): Differentiating Poisson's equation with respect to
time yields
(3.1) A% =n -op, .

xxt t t
Inserting for ne and P from (1.19)-(1.20) and replacing n by p +C + xzwxx gives
(3.2) ta) A%y =a, (b)) S=3 e = Nty - prc ety
(3.3) (&) py =3, -R (b)) I, =-p -p¥ .

% P x

n and Jn are then given a posterjori by

2
(3.4) n=p+C+2A L
(3.5) Jy = J = Jp =n, - nwx .

The boundary conditions (1.22)-(1.23) become
(3.6) v(o,t) = 0, szxx(O,t) = C(0), J(0,t) = ZJP(O,t)

2
(3.7) Y(1,e) = W1(t), A Wxx(‘ht) = 0, P(1lt) - P1 .

-17=
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Obviously (3.2), (3.3), (3.6), (3.7) are equivalent to (1.18)=(1.24) (provided the
solutions are sufficiently smooth).
We now try to determine a possible fast time scale:
(3.8) 1= «a >0 .
a
A
Away from the p-n Jjunction at x = § where we expect the derivatives w.r.t.x to be
bounded (3.2)(a)(b) assumes the form

2 2
(3.9) A wxxt =C,. = (2p + C)i’xx - (2p + c)xwx + 0(x7) .

XX
If 2p + C is in some sense "almost constant” away from x = 0 (which is the case for a
constant doping profile and reverse bias) (3.9) behaves like an ordinary differential
equation for wxx and therefore exhibits the fast time scale t/).z. This heuristic
argument can be made more rigorous: We supplement the asymptotic expansion (2.1) by an

additional term varying on the fast time scale T = t:/k(l where a > 0 has to be

determined yet:

Wit ) ~ ) W)+ wEe + 30k, :
(3.10) =e
.:":. E-'-;s, =, 1
P - @SN
= -

are the terms of the expansion (2.1) derived in the previous chapter.) We
>3

assume that 2z decays exponentially as T + =,

(; and w

)
v

RS .5 o]

-C.T
(3.11) 123 0, 1)1 < ce 2,

o Then we have the following:
g

(3.12) Lemma: The only value of a for which there exists a non~trivial solution ;O of

7 the corresponding equations is a = 2,

"

- The proof of the lemma is trivial but lengthy and is therefor deferred to the
bu
l~.'- appendix.
roe.
£
Yo,
‘s -18~-
rus.
o,
’a .
'@,
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(3.13) Remark: The time scale T = :/xz has the following physical meaning: In unscaled
form it is of the size CUT(chmux)-1 sec which is proportional to the dielectric
relaxation time (see Sze [1969]).

The equations for ;0 are now obtained from (3.2). Inserting the expansion (3.10)

into (3.2)-(3.9), fixing x and T = t/Xz and A + § gives:

~0 ~0 ~0 ~0 ~0~0
(3.14) ¢xx1 =[(2p + 2v + C)Ox - 2v lex
~0 ~0  ~0 ~0  ~0~0 ~0~0
(3.15) (a) v, = 0, (b) Jv - -vx -(p +v )¢x -v Wx
{3.16) el
~0 ~0 ~0 ~0 ~0 ~0~0
. (3.17) Ju - u, - (n +u )@x -u ¢x .
& ~0 ~0 ~0 ~0 ~0
:4 Here % , n and p have to be taken at (x,0). From (3.15), we conclude u = v = 0.
t; So we obtain 30 from the equation
« ~0 ~0 ~0
g (3.18) oxxt = «[(2p (x,0) + c(x))¢x]x .
3 ~Q ~0 ~0 ~0
o uo,vo, S’Jv are then given a posteriori by
- (3.19) a0
-
» ~0 ~0 ~0 ~0 ~0 ~0
- (3.20) (a) Jv(x,T) = =p (x,0)¢x(x,1). (b) J“!A,T) = -n (x,0)¢x(xof) .

Thus there is (in the zero order approximation) no fast time scale correction to the
carrier densities n and p (;0 = ;o = 0). This is reasonable since we expect the
carrier flux to be much slower than the dielectric relaxation time. Correspondingly the
fast time scale correction of the currents only involves the drift current. To determine
a solution $° of (3.18) it is necessary to impose two boundary conditions at x = §
and x = 1 and an initial condition at T = §. Since we have already satisfied all
boundary conditions with the slow time scale solution ;0 + ; we obtain
(3.21) onm=8 P =0

~0

We can prove the following result about the decay of ¢ :

(3.22) Theorem: The solution of the problem

~0 ~0 ~0
. (3.23) S e = ~1(2p (x,0) + ClxNd 1
¢ (3.24) Lo =g, Pan =0 o =g

satisfies

-19=
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(3.25)

13%x,1)| < ce™"

for some positive constant C and any a satisfying

(3.26)

ﬁ%xm)+CM)>a.

The proof is deferred to the appendix.

We now investigate the choice of proper initial functions for the problems (2.28)-
(2.34), (3.23)-(3.24) in order to construct an approximation to the solution of (1.18)=-
(1.24) for general initial data WI, ny and pg which just satisfy the conditions
(1.27)-(1.32). Since the zero-order-fast-time-scale corrections ;0';0 vanish (see
(3.19)) we have to choose ;g(x) as an initial function f for problem (2.28) in any
case. This leads to the following procedure to obtain a zero order approximation to the
solution of (1.18)-(1.24) for arbitrary initial data:

Step 1: Solve problem (2.28)-(2.34) with f(x)(= ;o(x,O)) = ;g(x). Obtain ;o(x,t) and
7%x,6). nl(x,0) = ;:(x) is then satisfied automatically because of (1.27).

Step 2: Solve the slow time-scale-boundary-layer problem (2.39)-(2.40). Obtain vo, no

and p’. Because of conditions (1.27)=(1.33) $°(£,0) = 3:(5), n%(£,0) = ;g(z),
p°(£,0) = pJ(&) Hholas.
If WI' ny and p; are the gsolution of the steady state problem we are done. If not we
have to perform 1
Step 3: Obtain § by solving (3.23)-(3.24) with g(x) = bo(x) = ¥ (x,0).
Now the solutions obtained by Steps 1-3 satisfy the differential equations together with

the boundary and initial conditions up to terms of order O(A). Higher order

approximations can now be obtained in a straightforward manner.

-20-
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4. Numerical Examples

. In this section we present some numerical results for a simple testproblem: We chose

6.m3 on the n-side

a diode of length 1u and a doping profile C which is constantly 10
(and because of symmetry —10 Scm -3 in the p-region). This corresponds to X = 0.05. We
varied the applied bias from 0.5V reverse bias to 0.5V forward bias. Figures 1-7 show
the solution for x € [0,1] where the p-n-junction is located at x = 0 and the contact
at x = 1. To obtain a solution on ([=-1,1] the graphs in Figures 1-7 would have to be
continued according to (1.15). For all calculations backward finite differences have been
used in time. 1In the x-direction we used the exponentially fitted finite difference
method introduced by Scharfetter and Gummel (see Scharfetter and Gummel {1969] and
Markowich et al. (1983b]) with an exponentially graded mesh near x =~ 0 to resolve the
junction layer. Figures 1 and 2 show the "full" solutions of (1.18)~(1.24) for p and

Y respectively. As initial data the steady state solution for 0.5V reverse bias has
been used. Thus no fast time scale solutions occur near t = 0. Pigures 3 and 4 show the
corresponding solutions of the reduced problem (2.28)-(2.34). In Figures 2 and 4

log1°(p) instead of p is plotted. To examine the fast time scale behavior we held the
bias constant at @V (equilibrium) and perturbed the initial conditions (thus violating
(2.44)). The dotted line in Figure 5 is the equilibrium solution for ¢. The other line
is the initial condition for Y. Figure 6 shows the solution for ¢ of the full problem
(1.18)=(1.24) on the fast time scale E;. Figure 7 shows the initial layer term zo(x,r)
in (3.10). h

:
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S. Appendix

(5.1) Proof of Theorem (2.36): Let o be given by

(5.2) a = max|£(x)] .
X

We employ the following transformation:

pix,t) = a;(x,t), Jp(x.t) = asp(x,t)
(5.3)

e C(x
x,e) = afix,t) + ¥ () + (SR

(5.4) (2.28)-(2.34) then becomes
(5.5) [(20p + C)%_+ 2p(fn )1, = O
(5.6) (@) Py =-3 -R (&) I, =-B -pltn O +ab)

% « —R(ap + C)
2a; +C+ 2w

(5.7 Bix,0) = 2(x), Fx) 1= “:’

(5.8 (a) B(O,&) = [ap(0,t) + c(0)]e 22¥ 0t L ia by
(B) 2B, (0,¢) = C(O)¥_(0,t)

59 BOLE) =By = By, ¥(ne) =B

p(a,t) is dependent on the size of the initial data (a) and the applied bias (#1)

-y, (t)
- S0, 1 . 1
(5.10) p(a,t) c(0 e 3 (< uo) .

If a is small enough and #1 is such that p is bounded (5.5)~(5.9) is up to a small

(2]

perturbation linear in 5 and p. Thus it can be solved by Picard iteration if the

appropriate spaces are chosen. We define

(5.1 ¥ &= {(u,v) | u,v €c?(0,1] x [0,T], U(1,&) = 0, C(OIU(0,¢t) = 2v_(0,6)}
z = (cfo,11 x {6,712 x c%to, 71 x c?{o0,1]

and the operators

=20




s
*uv’a

"l‘l v
{l‘l

‘e

AY,p) = ([(CV) + 2p(2n C)y)ys Py = Py = [P(En )], PUO,E), pUT,E), p(x,0))

-2 0,t
GUY,p) = (=20(p¥ ), S(B¥)_, plastle V(0. ) o(o,t) + c(0)), 0,0) .

XX

[
e

r—
F 4

ry
= Problem (5.5)=(5.9) can then be written in the form
- A(V,p) - G(¥,p) = (0,0,0,F(1),F(x)) .
(>
;:S A is a linear operator from Y onto 2 with a bounded inverse A-1. (This can simply
be shown by using Fourier expansions.) The Frechet derivative G' of G satisfies
. 2alyl
5 (5.12) 1G' (p,¥)N € af(2C(0) + a|p(0)|)p(a,t)e v ] .
.
': Thus it can be shown by the usual Picard iteration argument that the sequence defined by
» (5.13) APy 4oV pq) = CU¥, /) + (0,0,0,Z(1),F(x))
\ - -
‘w;~ converges to a solution (p,¥) of (5.5)-(5.9).
N
;-. (5.14) Proof of lemma (3.12): Inserting the expansion (3.10) into (3.2) (which are
.
{l
:: exponentially small away from x = 0) gives
L
2-a~0 2> ~0 2~0 ~0 2~0 ~0
7 (5.15) A ¢xx‘l' = 0xxxx - (2p-+C+A wxx 20+ ¢xx)0x]x
. ~Q0 ~
IR - [(2U0 + Xzzo )wol # h.o.t.
.~ x' x
"-
'. L]
_f, ~0 a ~0 ~0 ~0 ~0 ~ a~0
e (5.16) UT - ) [Ux +(p + Uo)¢x + Uozglx + AR . N
~ Ed a
A Here wo and p0 have to be evaluated at (x,tA ). (5.16) gives
‘." ~o
S U (x,T) = @
,;a
N for A+ 0. If a> 2 holds then (5.15) becomes
N (5.17) Q=0
) xxT
.;? for X » 0. Together with the boundary conditions (3.21) this gives
.'::. (5'18) zo(x,‘f) =0,
:f But in this case ;0 = g follows immediately. If a < 2 holds then (5.15) gives for
\‘-
) A+
~ ~0 ~0
O (5.19) =[(2p +C)é. 1 =9 .
a7 X' x o
':, Again using the boundary conditions (3.21) gives only the trivial solution for ¢ (and
c.N
[ therefore also for zo). Thue a = 2 hag to hold to get a zero'th order correction of
A0
o 50
e u.
'_:_ -30-
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(5.20) Proof of Theorem (3.33): Let y be defined by

~0 aTt
(5.21) y{x,T) = ¢ (x,T)e
for some a satisfying (3.37). Then y satisfies

~0
(5.22) y = =[(2p (x,0) + C(x) = a)yx)x

xxT
(5.23) y(0,T) = y(1,T) = 0 .

Multiplying (5.22) by y and integrating by parts gives

1

~ 2
(5.24) = %; | viax = - [ (2p(x,0) + c(x)-a)y dx .
0 0

If

min|2p(x,0) + c(x) - a] > 0
X

holds then the L, norm of y stays bounded and (3.25) holds.
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